Yup, I think your out of luck.
The whole house protectors work prob the best and degrade the least. Most of those you can set on a breaker and turn the breaker off for critical listening thus removing the protection for that time period.
The least offensive surg protectors seem to be the ones that use (i think this is what it's called) MOV technology.
Here some info on MOV.....
A metal oxide varistor consists of a bulk semiconductor material (typically sintered granular zinc oxide) that can conduct large currents (effectively short-circuits) when presented with a voltage above its rated voltage. MOVs typically limit voltages to about 3 to 4 times the normal circuit voltage by diverting surge current elsewhere than the protected load. MOVs may be connected in parallel to increase current capability and life expectancy, providing they are matched sets (unmatched MOVs have a tolerance of approximately ±20% on voltage ratings, which is not sufficient).
MOVs have finite life expectancy and "degrade" when exposed to a few large transients, or many more smaller transients. As a MOV degrades, its triggering voltage falls lower and lower. If the MOV is being used to protect a low-power signal line, the ultimate failure mode typically is a partial or complete short circuit of the line, terminating normal circuit operation.
If used in a power filtering application, eventually the MOV behaves as a part-time effective short circuit on an AC (or DC) power line, which will cause it to heat up, starting a process called thermal runaway. As the MOV heats up, it may degrade further, causing a catastrophic failure that can result in a small explosion or fire, if the line current is not otherwise limited. An undersized MOV fails when "Absolute Maximum Ratings" in manufacturer's data-sheet are significantly exceeded.
MOVs are often connected in series with a thermal fuse, so that the fuse disconnects before catastrophic failure can happen. When this happens, only the MOV is disconnected. A failing MOV is a fire risk, which is an original reason for the National Fire Protection Association's primary concern is protection from fire.
When used in power applications, MOVs usually are thermal fused or otherwise protected to avoid persistent short circuits and other fire hazards. In a typical power strip, the visible circuit breaker is distinct from the internal thermal fuse, which is not normally visible to the end user. The circuit breaker has no function related to disconnecting an MOV. A thermal fuse or some equivalent solution protects from MOV generated hazards.
If a surge current is so excessively large as to exceed the MOV parameters and blow the thermal fuse, then a light found on some protectors would indicate unacceptable failure. Even adequately sized MOV protectors will eventually degrade beyond acceptable limits, with or without a failure light indication. Therefore, all MOV-based protectors intended for long-term use should have an indicator that the protective components have failed, and this indication must be checked on a regular basis to insure that protection is still functioning.